首页
发现
课程
培训
文章
案例
问答
需求
服务
行家
赛事
热门搜索
发布
消息
注册
|
登录
讯技光电Trigger
签名征集中
关注
8
粉丝
1
关注
分享
全部
课程
文章
回答
帖子
案例模型
讯技光电Trigger
23天前发布了帖子
一起分享学习资料
VirtualLab Fusion应用:非近轴衍射分束器的设计与优化
衍射分束器能够通过预先设置的功率比值将单束激光分割成多束,广泛应用于激光材料加工和光学计量等领域。但是由于非近轴、高数值孔径分束和衍射角所需的特征尺寸较小,这种器件的设计和优化可能具有难度。VirtualLab Fusion为光学工程师提供了几个工具来帮助他们完成这项任务。
为了说明一般工作流程,我们展示了两个案例:在第一个案例中,我们采用迭代傅里叶变换算法(IFTA)和基于薄元近似(TEA)的结构设计生成一系列分束器的初始设计,然后通过傅里叶模态法或严格耦合波分析(FMM/RCWA)进一步优化。为了给最后一个优化步骤定义一个合适和有效的优化函数,应用了可编程光栅分析器。第二个示例更详细地介绍了这一部分。
采用傅里叶模态法(FMM)对非近轴衍射分束器进行了严格的评价,该方法最初采用迭代傅里叶变换算法(IFTA)和薄元近似算法(TEA)进行设计。这个应用案例演示了如何定义和使用用户自定义优化函数,用于评估和优化衍射高数值孔径分束器的衍射级次效率。
(图片从左往右:图1.非近轴衍射分束器的严格分析;图2.高数值孔径分束器优化与用户定义的优化函数)
转发
评论
5
讯技光电Trigger
23天前发布了帖子
一起分享学习资料
GLAD:大气像差与自适应光学
概述
激光在大气湍流中传输时会拾取大气湍流导致的相位畸变,特别是在长距离传输的激光通信系统中。这种畸变会使传输激光的波前劣化。通过在系统中引入自适应光学系统,可以对激光传输时拾取的低频畸变进行校正,从而显著提升传输激光的Strehl ratio。
系统描述
本例介绍了大气湍流像差对应命令phase/random/kolmogorov以及自适应光学命令adapt的使用。大气湍流对于激光波前的影响可以采用Kolmogorov功率谱模型表征;其中w^2(f)是波阵面的光谱功率,r0为可视参数, f是空间频率,L0是外部尺寸, Li是内部尺寸,这些参数的单位分别为rad,m,m-1。自适应模型中,假设所有的驱动器都是一样的并且均匀分布在一个正方形的口径中,用户可以自定义驱动器影响函数的空间宽度。对于空间波长大于用户自定义空间宽度的成分,自适应默认完全校正。引入自适应光学系统后,经过大气传输的激光光斑的初始Strehl ratio从0.04被显著提升到了0.87。
模拟结果:见图3、图4
(图片从左往右:图1.激光通信系统示意图;图2.Kolmogorov功率谱模型表征;图3.经过大气传输的激光波前分布,此时对应的Strehl ratio为0.04;图4.经过自适应光学矫正后的大气传输激光波前分布,此时对应的Strehl ratio为0.87)
转发
1
5
讯技光电Trigger
26天前发布了帖子
JCMSuite应用:光场通过六方晶胞的近场分析
这是一个简单的二维光栅的例子,具有双重周期(六方)晶格。三维单元晶胞在x和y平面上是周期性的。它包含两个不同的菱形(平行六面体),位于衬底上,被背景材料包围。我们选择了一个直角线单元晶胞(最小原始单元格)来避免结构的计算域边界的不利切割。案例中的材料选择为铬(菱形),玻璃(基底)和空气(背景材料)。光栅被S和P偏振平面波照亮。JCMsuite计算近场分布。下图显示了当波长为193nm时,平面波从衬底侧垂直入射到结构内的近场强度后处理傅里叶变换计算透射衍射级次的振幅。
(图1:模型建模;图2:S偏振光照明的场矢量;图3:P偏振光照明的场矢量)
转发
6
15
讯技光电Trigger
27天前发布了帖子
FRED应用:真实玻片设置
简介
FRED具备通过光学系统模拟光线偏振的能力。光源可以是随机偏振、圆偏振或线偏振。过滤或控制偏振的光学元件,如双折射波片和偏振片,可以准确的模拟。FRED偏振模型中一些简单例子包括吸收二向色性和线栅偏振片,方解石半波片,和马耳他十字现象。这些特性的每一个都可以应用到更复杂的光学系统中,如液晶显示(LCDs)、干涉仪和偏光显微镜。
波片模型
波片是由寻常光和非寻常光具有不同折射率值的材料制成。取向合适时,波片可以改变光线的一个偏振分量(相对于另一个),从而改变它的偏振态。四分之一波片使线偏振变成圆偏振,反之亦然。半波片使x偏振光变成y偏振光,或者右旋偏振光变成左旋偏振光。
从FRED系统的X偏振片示例开始,波片元件添加到了x偏振片后面(图2)。模拟一个波片有两种方法。最简单的方法是指定一个1/2波片涂层到一个表面上。在FRED文件的Coatings分类下,用户可以右键点击Create a New Coating….在下拉菜单中,可以选择“Polarizer/Waveplate Coating (Jones matrix)”。对于这个例子,涂层类型选择“1/2 wave 45 Fast Axis”。这样可以保证波片的晶轴相对于x偏振的入射光旋转45度。
模拟波片的一个更加精确的方法是指定一个自定义双折射材料到一个杆状元件中。在FRED文件的Material分类中,用户可以右键点击并选择Create a New Material….在下拉菜单中,可以选择“Sampled Birefringent and/or Optically Active Material”。对于这个例子,晶轴偏转 45°(0.707,0.707,0),然后定义下面的材料特性(基于方解石晶体):波长=0.59um,no=1.658,ne=1.486,ko=0,ke=0。作为1/2波片,一定要选择杆的长度,这样寻常和非寻常偏振分量可以通过1/2λ的净值分隔开来。
其中L=杆长,λ是以系统单位表示的光波长,K是一个整数,no和ne是双折射率的寻常和非寻常分量。通过这个块状双折射材料的光线追迹会将每个光线分成寻常和非寻常分量。作为分析结果,偏振点图(Polarization Spot Diagram)将会显示每个单独的分量(图4)。
为了保证光线确实是y偏振的,在探测器表面显示了相干矢量波场(Coherent Vector Wave Field)。选择右键菜单“Show X Component of Field”,然后再次点击右键,选择“Show Statistics”,可以观察到x偏振分量上能量的积分。比较X分量和Y分量,可以证实几乎所有的入射能量都在y偏振分量上。波片的厚度决定了到达探测器x和y偏振光的比值。为了说明这一点,使用3°楔形方解石替代杆状波片。相干场的x和y分量如图5所示。
【(图片从左往右)图2:随机偏振光通过x偏振片过滤。剩余的光线通过一个 45°1/2波片(黄色),它可以将x偏振光转换成y偏振光。图3:波片的杆长度公式。图4: x偏振光通过一个方解石1/2波片后的偏振点图。偏振的寻常和非寻常分量绘制成单独的光线。图5:x偏振光通过具有 45°光轴的楔形方解石晶体后,探测器上相干矢量场的x和y分量。波片厚度沿着y方向变化,因此在沿着楔形周期性位置处担当着1/2波片的角色】
转发
2
2
讯技光电Trigger
27天前发布了帖子
一起分享学习资料
VirtualLab Fusion应用:F-THETA 扫描镜头
对于高功率激光扫描系统领域中的许多应用,重要的是要确保离轴焦点位于焦平面上,而不是像常规球面透镜那样在曲面上。 F-theta 镜头的开发考虑了这一要求,旨在将入射的准直光束聚焦到一个焦点上,该焦点的横向位移理想情况下与扫描角度线性相关。
快速物理光学和设计软件 VirtualLab Fusion 提供了多种工具,允许光学工程师检验特定 f-theta 设计的性能。其中包括计算实际光斑位置和所需光斑位置之间偏差的畸变分析器,以及允许同时配置一组具有不同入射方向的视场模式的扫描光源,以便更方便地研究系统。此外,强大的场追迹引擎使用户能够使用物理光学研究焦点的行为(点扩散函数),该功能能够发现纯光线追迹器未考虑的其他影响。
使用 VirtualLab Fusion 中的扫描光源,我们通过测量不同扫描角度下焦点位置的偏差和光斑大小来分析 F-Theta 镜头的性能。
VirtualLab Fusion 中的扫描光源定义了一个多模光源,它可以生成一组截断的平面波,辐射到几个预定义的方向,这有助于例如激光扫描系统的建模和评估。
【图1:F-Theta扫描镜头的性能评估;图2:如何设置扫描光源(图片顺序从左往右)】
转发
评论
2
讯技光电Trigger
28天前发布了帖子
一起分享学习资料
FRED案例:矩形微透镜阵列
介绍
小透镜阵列可应用在很多方面,其中包含光束均匀化。本文演示了一个用于在探测器上创建均匀的非相干照度的成像微透镜阵列的设计。输入光束具有高斯轮廓,半宽度等于微透镜阵列大小,并且显示了其功率轮廓被微透镜阵列消除掉。
系统输出
简单示例系统由单色光源组成,空间高斯切趾功率(1/e2=5mm)和0.6度半发散角,两个相同的33*33透镜阵列(10mm孔径),微透镜焦距4.80mm和单个微结构0.3mm,成像透镜焦距100mm及位于成像透镜的后焦平面位置的一个探测器平面。成像结构如下所示,fLA1 < a12 < fLA1 fLA2。在探测器平面上照明区域的直径由下式给出:见图2;照明平面上的半发散角度由下式给出:见图3
在FRED文件给出的例子中,对于指定的微透镜阵列和成像透镜,结构如下给出:DFT=6.07mm;θ≈4.4º
微透镜构建
微透镜的结构包括一个输入平面,阵列式的基面和接近于微透镜阵列裁剪体的外边缘表面,这些组件如图4所示。可以采取以下步骤来创建微透镜阵列的几何结构。
1. 创建一个组件来控制微透镜阵列的组件(Menu > Create > New Subassembly)。
2. 创建一个半宽度对应阵列微透镜的输入平面。在这个例子中,微透镜间距是0.3毫米,微透镜的数量是33x33,所以平面半宽度是16 *0.3 0.15=4.95mm。FRED原始构造用于定义平面(Menu>Create>New Element Primitive>Plane)。创建一个半宽度对应排列微透镜的输入平面。在这个例子中,微透镜间距是0.3毫米,微透镜的数量是33x33,所以平面半宽度是16 *0.3 0.15=4.95mm。FRED元件的初始结构使用平面(Menu>Create>New Element Primitive>Plane)。
3. 创建一个包含基面的自定义元件节点(Menu>Create>New Custom Element)。这个自定义元件节点将阵列形成微透镜出射面。
a. 在步骤3中,创建一个新的表面作为自定义元件的子元件(Menu>Create>New Surface)。在这种情况下,表面类型:conic=1, R=-2.2。表面的孔径选项上,调整外边界X和Y的尺寸设置为阵列间距(0.15mm)的一半。Z-长度应该减小到包含表面的最小尺寸(提示:使用脚本语言的Sag函数来找到半孔径必须的Z-长度)。
b. 整列步骤3中创建的自定义元件的基表(鼠标右键点击自定义元件节点并选择“Edit/View Array Parameters”)。在这个例子中,在X和Y方向上定义的阵列间距等于在每个方向上的微透镜间距。对于33x33微透镜阵列,在每个方向上的最小和最大元胞值设置为-16到 16。
4. 添加另一个自定义元件到组件节点,它包含边缘面,可以由挤压一个沿z轴的封闭曲线组成。
a. 将曲线添加到自定义元件节点(Menu>Create >New Curve),并将其类型设置为“Segmented”。在电子数据表格区域右击鼠标并选择“Generate Points”来打开一个可以用于快速指定一个封闭的分段曲线的实用工具。在这个例子中,孔径的形状是半孔径为4.95mm的方形。在分段曲线生成对话框中我们可以选择以下设置:
i. # points around generating curve = 4
ii. X semi-width = Y semi-width = 4.95
iii. Orientation = Top edge parallel to X axis
iv. Type = circumscribe
b. 添加表面到自定义元件,并将其类型设置为“Tabulated Cylinder”。准线曲线应该是来自4a的封闭曲线,并且其Z方向应该设置为微透镜阵列(Z=1.2)的厚度。表面对话框的孔径选项上设置其x和y裁剪体外边界略大于微透镜阵列的孔径(例如4.96)。z裁剪体应该足够大,以包含挤压表面。
仿真结果
系统布局原理图中所示的三种光束可以在FRED附加示例文件中进行模拟,通过使用鼠标右键单击菜单选项的切换光源“InputSource 1”,“InputSource 2”和“InputSource 3”可追迹。光源“FullAperture”设置为不可追迹。光线追迹的结果如图5所示。当光源“FullAperture”可追迹时,其照射轮廓是5mm半宽度的高斯形,如图6所示;在探测平面上的最终分布如图7所示;在光照平面上的强度轮廓如图8所示。
(图片顺序从左往右依次排列)
转发
评论
点赞
讯技光电Trigger
28天前发布了帖子
JCMsuite应用:太阳能电池的抗反射惠更斯超表面模拟
人们构想大量不同的策略来替代随机纹理,用来改善太阳能电池中的光耦合效率。虽然对纳米光子系统的理解不断深入,但由于缺乏可扩展性,只有少数提出的设计在工业被上接受。在本应用中,一种定制的无序排列的高折射率介质亚微米量级的二氧化钛(TiO2)圆盘作为标准异质结硅太阳能电池的抗反射惠更斯超表面在试验中进行开发。无序阵列使用基于胶体自组装的可伸缩自下而上的技术制造,该技术几乎不考虑设备的材料或表面形态。我们观察到,与采用优化的平坦抗反射ITO层的参考电池相比,反射率的宽频带降低导致短路电流相对改善5.1%。我们讨论了在保持螺旋度的框架下超表面的光学性能,这可以通过调整其尺寸在特定波长下实现对一个孤立圆盘沿对称轴的照明。
本工作中所考虑的太阳能电池结构示意图。Rdiff和Rspec表示漫反射和镜面反射部分。该圆盘是在异质结技术(HJT)后发射极太阳能电池上沉积的,其表面是用非晶硅(aSi)固有层和n 掺杂层钝化的未抛光的平面硅片ITO薄膜既是减反射涂层(ARC),也是正面触点。(左图,中间图)不同放大倍数的太阳能电池顶部圆盘的电子显微图。左边的图突出了单个圆盘的特性,而中间的SEM图突出了样本的一致性。(右图)39 × 39 mm涂层太阳能电池的照片。
通过Born近似计算的圆盘图案的反射率和单个圆盘的有限元模拟(本文讨论的数值模拟是基于有限元方法(FEM)的软件JCMsuite)。测量圆盘涂层样品和调整平板的反射率ARC (50 nm厚度的ITO)的圆盘结构。一个标准的平面ARC参考(80 nm厚度的ITO)作为比较。
(从左往右图片分别为:图一:太阳能电池结构示意图、图二:太阳能电池顶部圆盘的电子显微图,39 × 39 mm涂层太阳能电池的照片
图三:测量圆盘涂层样品和调整平板的反射率ARC)
转发
评论
点赞
讯技光电Trigger
29天前发布了帖子
OCAD应用:凸轮曲线的优化设计
机械补偿式连续变焦光学系统,通过系统的活动组分相对固定组分沿轴向运动改变各组分之间间隔尺寸,在保证系统像面稳定不变的前提下,连续改变系统焦距。系统中,最后一个固定组前的总组分数称为该连续变焦光学系统的组分数,比如含有一个前固定组、一个变焦组、一个补偿组以及一个固定组的变焦系统被称为三组分变焦系统。为保证各活动组分在变焦过程中按设计要求移动活动组分,保证其表面间隔尺寸,一般都使用凸轮结构驱动各组分的运动,因此,凸轮曲线的设计也必然是光学设计的重要任务。
在进行凸轮曲线设计时,不仅要考虑凸轮转动时确保各活动组分之间准确的间隔尺寸,保证在变焦过程中光学系统像面的稳定,还要考虑到运动曲线的平滑性以及曲线的陡度,避免运动中的卡滞现象,当然还要考虑到凸轮加工的工艺性。
凸轮曲线的优化设计
一般情况下,设计凸轮曲线时会把固定组后的变焦组的运动规律设计成直线,减少加工成本,但这是可能会带来补偿组的运动曲线过于弯曲,运动速率过大,甚至因运动速率过大以致影响凸轮运转过程中发涩甚至卡死。为了避免这一情况的发生,可以有意把变焦组曲线改成曲线缓解补偿组的曲线陡度,以便有效改善凸轮曲线平滑运行。
从凸轮运动曲线及其运动速率可以看出此时在长焦处补偿组运动速率已达72°,不可能平滑运转,此时必重新优化凸轮曲线,确保凸轮顺利运转。在优化时首先返回设计界面初始状态,如图2,选择“曲线运动轨迹”或“复合曲线轨迹”。所谓“曲线运动轨迹”或“复合曲线轨迹”其区别在“曲线运动轨迹”是对变焦组的运动曲线全过程均为一个完整的三次方程式,而 “复合曲线轨迹”则是把变焦组运动轨迹的前半段保持直线运动,只是在指定位置之后才改成曲线运动,这样可以重点改善变焦后半段的曲线运动速率,因为补偿组的运动速率只在后半段才变化激烈。
在选择“曲线运动轨迹”后,界面下方会给出运动曲线方程系数的表格,可以直接填写。如果选择“复合曲线轨迹”,界面上除显示运动曲线方程系数的表格框外,还显示“结合点位置”系数,以便根据需要选择合适直线与曲线结合点的位置,无论选择以上哪种,都还可以利用拉杆条之间控制凸轮运动曲线或运动速率轨迹曲线。也可以先预设初步曲线方程系数,然后通过拉杆条调整。在选择“曲线运动轨迹”后,按“确定”键出现图3界面。
经过以上选择与调整,使得系统凸轮运动曲线及其运动速率曲线最终优化为较满意结果
(图片从左往右分别为:图1.变焦系统凸轮优化设计窗体、图2.凸轮运动曲线及其运动速率、图3.选择“复合曲线轨迹”界面、图4.利用拉杆条调节运动曲线、图5.凸轮曲线优化结果)
转发
评论
3
1
2
3
4
5
VIP会员
学习计划
福利任务
下载APP
联系我们
微信客服
联系客服
人工服务时间为周一至周五的9:30-19:30
非工作时间请在微信客服留言
客服热线:
4000-969-010
邮箱:
service@fangzhenxiu.com
地址:
北京市朝阳区莱锦创意园CN08座
帮助与反馈
返回顶部