特征值和特征向量

一、特征值就是那个矩阵所对应的一元多次方程组的根  

特征值,表示一个矩阵的向量被拉伸或压缩的程度。


量子力学中,矩阵代表力学量,矩阵的特征向量代表定态波函数,矩阵的特征植代表力学量的某个可能的观测值。


一个向量(或函数)被矩阵相乘,表示对这个向量做了一个线性变换。如果变换后还是这个向量本身乘以一个常数,这个常数就叫特征值。这是特征值的数学涵义。


至于特征值的物理涵义,根据具体情况有不同的解释。比如动力学中的频率,稳定分析中的极限荷载,甚至应力分析中的主应力。


要说清楚矩阵的特征值还要从线性变换入手,把一个矩阵当作一个线性变换在某一组基下的矩阵,最简单的线性变换就是数乘变换,求特征值的目的就是看看一个线性变换对一些非零向量的作用是否能够相当于一个数乘变换,特征值就是这个数乘变换的变换比,这样的一些非零向量就是特征向量,其实我们更关心的是特征向量,希望能把原先的线性空间分解成一些和特征向量相关的子空间的直和,这样我们的研究就可以分别限定在这些子空间上来进行,这和物理中在研究运动的时候将运动分解成水平方向和垂直方向的做法是一个道理!

二、特征向量——定义  

数学上,线性变换的特征向量(本征向量)是一个非退化的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。一个变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的**。


这些概念在纯数学和应用数学的很多领域发挥着巨大的作用—在线性代数,泛函分析,甚至在一些非线性的情况中也有着显著的重要性。

空间上的变换—如平移(移动原点)、旋转、反射、拉伸、压缩或者这些变换的组合,以及其它变换—可以通过它们在向量上的作用来显示。向量可以用从一点指向另一点的箭头来表示。

三、特征向量——性质  

变换的特征向量是指在变换下不变或者简单地乘以一个缩放因子的非零向量。特征向量的特征值是它所乘的那个缩放因子。


特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。变换的主特征向量是对应特征值最大的特征向量。

特征值的几何重次是相应特征空间的维数。有限维向量空间上一个变换的谱是其所有特征值的**。


例如,三维空间旋转的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转的谱当中唯一的实特征值。

四、特征向量——参看:特征平面  

地球的自转,每个从地心往外指的箭头都在旋转,除了在转轴上的那些箭头。考虑地球在一小时自转后的变换:地心指向地理南极的箭头是这个变换的一个特征向量,但是从地心指向赤道任何一处的箭头不会是一个特征向量,因为指向极点的箭头没有被地球的自转拉伸,它的特征值是1。

另一个例子是,薄金属板关于一个固定点均匀伸展,使得板上每一个点到该固定点的距离翻倍。这个伸展是一个有特征值2的变换。从该固定点到板上任何一点的向量是一个特征向量,而相应的特征空间是所有这些向量的**。


但是,三维几何空间不是唯一的向量空间。例如,考虑两端固定的拉紧的绳子,就像弦乐器的振动弦那样。振动弦的原子到它们在弦静止时的位置之间的带符号那些距离视为一个空间中的一个向量的分量,那个空间的维数就是弦上原子的个数。

如果考虑绳子随着时间流逝发生的变换,它的特征向量或者说特征函数(如果将绳子假设为一个连续媒介),就是它的驻波——也就是那些通过空气的传播让人们听到弓弦和吉他的拨动声的振动。驻波对应于弦的特定振动,它们使得弦的形状随着时间变化而伸缩一个因子(特征值)。**相关的该向量的每个分量乘上了一个依赖于时间的因子。驻波的振幅(特征值)在考虑到阻尼的情况下逐渐减弱。因此,可以将每个特征向量对应于一个寿命,并将特征向量的概念和共振的概念联系起来。

五、特征向量——应用  

1. 特征向量——分子轨道


在量子力学中,特别是在原子物理和分子物理中,在Hartree-Fock理论下,原子轨道和分子轨道可以定义为Fock算子的特征向量。相应的特征值通过Koopmans定理可以解释为电离势能。在这个情况下,特征向量一词可以用于更广泛的意义,因为Fock算子显式地依赖于轨道和它们的特征值。如果需要强调这个特点,可以称它为隐特征值方程。这样的方程通常采用迭代程序求解,在这个情况下称为自洽场方法。在量子化学中,经常会把Hartree-Fock方程通过非正交基**来表达。这个特定的表达是一个广义特征值问题称为Roothaan方程。


2. 特征向量——因子分析


在因素分析中,一个协变矩阵的特征向量对应于因素,而特征值是因素负载。因素分析是一种统计学技术,用于社会科学和市场分析、产品管理、运筹规划和其他处理大量数据的应用科学。其目标是用称为因素的少量的不可观测随机变量来解释在一些可观测随机变量中的变化。可观测随机变量用因素的线性组合来建模,再加上“残差项。

3、特征向量——特征脸是特征变量的例子


在图像处理中,脸部图像的处理可以看作分量为每个像素的辉度的向量。该向量空间的维数是像素的个数。一个标准化面部图形的一个大型数据**的协变矩阵的特征向量,称为特征脸。它们对于将任何面部图像表达为它们的线性组合非常有用。特征脸提供了一种用于识别目的的数据压缩的方式。在这个应用中,一般只取最大那些特征值所对应的特征脸。


4、特征向量——惯量张量


在力学中,惯量的特征向量定义了刚体的主轴。惯量是决定刚体围绕质心转动的关键数据。


5、特征向量——应力张量


在固体力学中,应力张量是对称的,因而可以分解为对角张量,其特征值位于对角线上,而特征向量可以作为基。因为它是对角阵,在这个定向中,应力张量没有剪切分量;它只有主分量。

【免责声明】本文来自数理溯源(ID:physics1905science),作者:伽玛,版权归原作者所有,仅用于学习等,对文中观点判断均保持中立,若您认为文中来源标注与事实不符,若有涉及版权等请告知,将及时修订删除,谢谢大家的关注!



来源:CAE之家
2022-08-20 同步
还没有评论
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈