1、学习仿真工程师;
2、学习新能源汽车电池包仿真的工程师;
3、STAR-CCM 软件学习和应用者;
4、从新能源汽车电池包冷却设计的工程师;
5、从电热热失控分析的工程师。
1、学习STAR-CCM 计算流程,
2、掌握电池包热流耦合分析;
3、能帮助用户掌握电池包的热失控方法;
4、解决在电池包仿真过程中遇到的一些难点问题。
新能源汽车电池热失控仿真
热失控:电池组的热释放
l电池在热力或机械故障、短路或超充/过放时会出现热失控现象,导致电池单体过热。在高温下,电池单体材料可能开始发生自发热反应分解,导致自加热行为。当电池单体的自加热速率超过了向周围环境散热的速率时,电池温度呈指数增长,电池结构可能破裂,并释放剩余的热能和电化学能量到周围环境中。
l分解的自发热反应以高速大量产生热量和气体,导致电池单体内部温度和压力几乎瞬间增加。大多数电池都内置了安全排气机制。在热失控时,电池的固体部分会释放热量。
lSTAR-CCM 提供了热失控热释放模型,用于预测电池单体在热失控过程中固体部分所释放的热量。该模型需要实验数据输入,即电池单体的自加热速率与电池单体温度的关系。这些数据通常通过进行加速速率量热计(ARC)测试来获得。在STAR-CCM 中,这些数据以表格的形式导入。
电池由32个模组组成,每个模拟由12个电芯组成,在相邻两个模组之间设置了隔热板,试图阻止相邻两个模组之间的传热。模拟对一个模组进行加热,模组中的第一个电芯单体旁通过施加600瓦的热源而过热。当电池单体的温度超过156°C时,触发热失控,并激活热失控热释放模型。在仿真过程中,热失控通过对流和传导传播到电池组中的其他电池单体。
结果分析
第一个模组失控,引发第二个模组失控,现有模组之间的隔热未能阻止失控模组往正常模组的传热,模组之间的隔热需要进行改进设计。