首页/文章/ 详情

应用案例:HFSS设计仿真倒F天线

5月前浏览7906

本文摘要(由AI生成):

本文介绍了使用HFSS软件分析倒F天线性能的方法,特别关注了谐振长度L、馈线高度H和竖线直臂间距S对天线谐振频率和输入阻抗的影响。通过参数扫描分析功能,对这三个变量进行了仿真分析,并生成了包括三维增益方向图、S11分析结果、输入阻抗结果报告和Smith圆图等多种结果。这些结果有助于深入理解天线的性能特性,并为天线设计和优化提供了依据。


倒F天线(Inverted-F Antenna,IFA)是单极子天线的一种变形结构,具有体积小、结构简单、易于匹配、制作成本低等优点。


其广泛应用于蓝牙、WiFi等短距离无线通信领域。


倒F天线衍变发展的过程可以看成是从1/4波长单极子天线到倒L天线再到倒F天线的过程。



首先,将单极子天线进行90°弯曲,得到倒L天线,其总长仍然是1/4波长,单极子天线做这一变形的目的是有效减少天线的高度。


然而对于倒L天线,其上半部分平行于地面,这样减小高度的同时增加了天线的容性,为了保持天线的谐振特性,我们就需要增加天线的感性,通常是在天线的拐角处增加一个倒L形贴片,贴片的一端通过过孔与地面相连,这样就形成了倒F天线。


倒F天线结构如图所示:




倒F天线由长L的终端开路传输线和长为S的终端短路传输线并联组成。

其中,开路到馈点可以等效成电阻和电容的并联(相当于负载,谐振时开),短路端到馈点可以等效为电阻和电感的串联(谐振时短路)。

当天线谐振时,电流主要分布在天线的水平部分和对地短路部分,而馈电支路基本无电流分布。



倒F天线的设计和分析


本案例 倒F天线制作在PCB上,工作于2.4GHz ISM频段,其中心频率为2.45GHz,并要求10dB带宽大于100MHz(S11,小于-10db的带宽达到100MHz以上)。

倒F天线结构模型如下图所示:




整个天线结构分为3个部分,分别是倒F形状天线、介质层和接地板。



介质层的材质使用的是PCB中最常用的玻璃纤维环氧树脂(FR4),其相对介电常数4.4,损耗正切为0.02.介质层厚度为0.8mm,长度和宽度分别为110mm和50mm。

接地板位于介质层的下表面,其长度和宽度分别为90mm和50mm.

倒F天线位于介质层的上表面,其谐振长度L=16.2mm,天线高度为H=3.8mm,接地点和馈电点的距离S=5mm,微带线的宽度为1mm。

天线的接地点通过过孔与地板相连接,在建模时,对接地的过孔做了简化处理,用一个矩形理想导体平面来代替。

为了便于更改模型的大小以及后续的参数化分析,及分析天线的结构参数对天线性能的影响,在HFSS设计建模时,我们需要定义一系列的变量来表示天线的结构。

其中,天线的谐振长度用变量L表示,天线的高度用H表示,馈电点和接地点之间的距离用S表示,天线微带贴片的宽度用W表示,接地板的长度和宽度分别用GndY和GndX来表示,介质层的厚度用SubH表示,如下表变量及初始值:






HFSS仿真设计过程

新建设计工程



(1)、打开ANSYS Electronics Desktop 2019 R2,默认建立了一个工程Project1,右键点击Project1,保存输入工程名IFA_20200212,选择文件夹,保存。



点击HFSS,弹出HFSS工作界面:



(2)、设置求解类型


从主菜单中选择HFSS-->Solution Type命令,打开如下对话框,选择终端驱动求解类型 Terminal,OK.



(3)、设置模型长度单位mm


从主菜单栏中选择Modeler-->Units 命令,打开设置窗口:




添加和定义设计变量


从主菜单栏中选择HFSS-->Design Properties 命令,打开设计属性对话框。在该对话框中单击Add按钮,打开add Property对话框,依次添加变量:




IFA天线设计建模


设置系统的坐标原点位于接地板顶端的中心位置。


接地板和天线辐射体都设置为不考虑厚度的理想薄导体。


首先在xoy平面上创建长度和宽度分别为变量GndY和GndX的接地板,并设置其边界条件为理想导体边界,用以模拟理想导体特性。


然后在接地板的正上方创建材质为FR4,厚度为SubH的介质层。


最后在介质层上表面(即z等于变量SubH的平面)创建倒F天线。


(1)、创建接地板


在xoy平面上创建一个矩形面,其一个顶点的坐标为(-GndX/2, -GndY, 0),长度和宽度分别为GndY和GndX.矩形面模型建好后,设置其边界条件为理想导体边界。


从主菜单选择Draw-->Rectangle命令或单击工具栏上的按钮,进入创建矩形面状态,然后在三维模型窗口的xy面上创建一个任意大小的矩形面。


新建的矩形面会添加到操作历史树sheets节点下,其默认名称是Rectangle1,双击操作历史树sheets下的Rectangle1选项,打开新建矩形面属性对话框的Attribute(属性)选项卡,在Name文本框输入GND,设置颜色为铜黄色,确定。



展开操作历史树下的GND节点,双击该节点下的GreatRectangle选项,打开新建矩形面属性对话框Command选项卡,在选项卡中设置矩形面的顶点坐标和大小。


在Position文本框中输入顶点坐标(-GndX/2, -GndY, 0),在XSize和Ysize文本框中分别输入宽度和长度GndX和GndY,确定。



按Ctrl+D全屏显示创建的物体模型:



在三维模型窗口选择参考地模型,然后单击鼠标右键,在弹出的快捷菜单中选择Assign Boundary-->Perfect E 命令,打开理想导体边界设置对话框,将Name默认的PerfE1修改为PerfE_GND,确定。



(2)创建介质层


创���一个长方体模型用以表示介质层。模型位于接地板的正上方,即模型的地面位于xoy平面,模型介质为FR4, 并将模型命名为Substrate。


从主菜单栏中选择Draw-->Box命令,或单击工具栏上的按钮,创建一个任意大小的长方体,命名为Box1,双击Solids节点下的Box1 更改名称为Substrate,将Material选项对应的Value值设置为FR4_epoxy,设置其材质为FR4_epoxy,然后设置颜色为深绿色,设置透明度为0.6,确定。



双击操作历史树Substrate节点下的CreateBox选项,打开属性对话框,设置长方体顶点坐标和大小,如下图,确定。



Ctrl+D 预览



(3)创建倒F天线模型

创建倒F天线的辐射贴片模型,其位于介质层上表面,通过一个理想导体矩形面接地,天线辐射贴片的形状如图:


A.创建矩形面1,命名为FeedLine,长宽分别为H、W:



 B. 创建矩形面2,命名为Gndstub1,长度和宽度分别为H和W:



C.创建矩形面3,命名为Gnd_stub2,长、宽分别为S+2*W、W



D.创建矩形面4,命名为Antenna,其长度和宽度分别为L和W



E. 创建矩形面5,该命名为与xz平面,单击工具栏上的下拉列表框,选择XZ。


创建该平面,命名为Gnd_via,其长度和宽度分别为SubH和W



F.合并矩形面生成完整的倒F天线。


按住Ctrl键,一次单击操作历史树sheets下的Antenna、FeedLine、Gnd_stub1、Gnd_stub2和Gnd_Via,然后从主菜单栏中选择Modeler-->Boolean-->Unite命令,或单击工具栏上的按钮,执行合并操作。合并生成的新物体名称为Antenna。



G.设置倒F天线模型的边界条件,选中sheets下的Antenna选项,右键单击,选中Assign Boundary-->Perfect E命令,修改名称为PerfE_Antenna,OK。


(4)设置激励端口


因为天线的输入端口位于模型的内部,所以需要使用集总端口激励。

在天线的馈线(即矩形面FeedLine)底端和接地板之间创建一个平行于xz平面的矩形面,将其作为天线的激励端口面,如图矩形面6,然后设置该激励端口面的激励方式为集总端口激励。

确认工作平面在xz平面,创建矩形面,命名为Feed_Port:





设置激励,在操作历史树sheets下单击Feed_Port,选中矩形面,然后鼠标右键,Assign-->Lumped Port命令,打开终端驱动求解类型下集总端口设置对话框。

Port Name 选项默认为1,下面的Conductor选项设置端口参考地,这里选中GND对应复选框,OK,完成集总端口激励的设置,完成后,设置的集总端口名称1会自动添加到工程树Excitations下,1是集总端口激励名称,Antenna_T1是终端线名称:




双击Excitations节点下的端口激励名称1,打开Lumped Port 对话框,确认端口阻抗为50Ω。双击终端线名称Antenna_T1,打开Terminal对话框,名称可以改为T1,确认其归一化阻抗也是50Ω。

(5)、创建和设置辐射边界
使用HFSS分析天线问题时,必须设置辐射边界条件,且辐射表面和天线之间的距离需要不小于1/4个工作波长。

在本设计中设置一个长方体模型的表面为辐射表面,辐射表面和倒F天线模型距离为1/2个工作波长。

首先创建一个长方体模型AirBox,该长方体模型各个表面和介质层Substrate表面之间的距离都是1/2个工作波长,然后把该长方体模型的全部表面都设置为辐射边界条件。

设置当前工作平面为xy,创建Box,命名为AirBox:





长方体模型AirBox创建好之后,右键单击操作历史树Solids节点下的AirBox选项,Assign Boundary-->Radiation(辐射)命令,打开对话框,保持默认设置不变,OK,即把长方体模型的表面设置为辐射边界条件。

设置完成后,辐射边界条件的默认名称Rad1会自动添加到工程树的Boundaries节点下。



(6)求解设置

所设计的倒F天线工作于2.4GHz,中心频率为2.45GHz,所以求解频率可以设置为2.45GHz,同时添加1.8G-3.2GHz的扫频设置,选择插值(Interpolating)扫描类型,分析天线在1.8-3.2GHz频段内的回波损耗和输入阻抗等性能。


A.求解频率和网格剖析设置


右键单击工程树下的Analysis节点,在弹出的快捷菜单中选择Add Solution Setup-->Advanced命令,打开对话框,设置如下:



B.扫频设置,展开Analysis 下Setup1,右键,选择Add Frequency Sweep 命令,打开Edit Sweep对话框,设置如下:




OK



(7)、设计检查和运行仿真计算


         HFSS-->Validation Check



右键单击Analysis,选择Analysis All命令开始仿真计算。


(8)、查看天线性能参数


仿真分析完成后,在数据后处理部分能够查看天线的各项性能参数。


A.通过查看天线的回波损耗(S11),即可看出天线的谐振频率。右键单击工程树Result节点,在弹出的快捷菜单中选择Create Terminal Solution Data Report-->Rectangular Plot 命令,打开报告对话框:



核对对话框左侧Solution 选项选的是Setup1:Sweep,在Gategory列表框中选中Terminal S Parameter 选项,在Quantity列表框中选中St(Antenna_T1, Antenna_T1),在Function列表框中选中dB选项。


然后单击New Report,再单击Close,即可生成下图S11分析结果:



右键添加mark点:



从结果报告中可以看出,天线谐振频率为2.45GHz,10dB带宽约为400MHz.在2.45GHz时,S11=-35.2655。


B.查看天线的输入阻抗



在直角坐标系下和Smith原图下分别查看天线的输入阻抗随频率的变化关系。

右键单击工程树下的Result节点,在弹出的快捷菜单中选择Create Terminal Solution Data Report-->Rectangular Polt 命令,打开报告设置对话框,Solution 同样选择Setup1:Sweep,在Category列表中选择Terminal Z Parameter, Quantity 选择Zt(Antenna_T1, Antenna_T1),Function 中选择im和re,  表示同时查看输入阻抗的虚部(电抗部分)和实部(电阻部分)。

然后单击New Report,再单击Close,即生成天线输入阻抗结果的报告:


                            


添加mark点:



从报告中可以看出,在2.45GHz中心频率上,天线的输入阻抗为(51.5622+j0.7925)Ω,可见此时天线的输入阻抗已经和50Ω匹配良好。


再次右击Result, Create Terminal Solution Data Report-->Smith Chart 打开设置对话框,Solution 同样选择Setup1:Sweep,在Category列表中选择Terminal S Parameter, Quantity 选择St(Antenna_T1, Antenna_T1),Function 中选择none。


然后单击New Report,再单击Close,即生成Smith圆图显示的天线输入阻抗结果报告:




报告中可以看出,在2.45GHz中心频率上,天线的归一化输入阻抗为(1.0312+j0.0159)Ω。


C.查看天线的方向图


这里查看天线的三维增益方向图。天线方向图是在远场区确定的,当查看天线的远区场分析结果时,首先需要定义辐射表面。


右键工程树下的Radiation节点,在弹出的快捷菜单中选择Insert Far Field Setup-->Infinite Sphere 命令,打开Far Field Radiation Sphere Setup 对话框,定义辐射表面:



点击OK定义名称为Infinite Sphere 3D的辐射表面添加到Radiation下。


查看三维增益方向图:右键单击工程树下的Result节点,在弹出的快捷菜单中选择Create Far Fields Report -->3D Polar Plot 命令,打开设置对话框,在Geometry选择Infinite Sphere 3D,在Category列表中选择Gain, Quantity 选择GainTotal,Function 中选择dB。


然后单击New Report,再单击Close,即生成倒F天线的三维增益方向图:







天线的结构参数对天线性能的影响

下面使用HFSS的参数扫描分析功能来具体分析倒F天线的谐振长度L、馈线高度H以及两条竖线直臂之间距离S对天线谐振频率和输入阻抗的实际影响。

谐振长度L和天线谐振频率、输入阻抗的关系


添加倒F天线的谐振长度变量L为扫描变量,使用参数扫描分析功能仿真分析给出的变量在15.2mm到17.2mm变化时,天线谐振频率和输入阻抗的变化。

1)、右键单击工程树下的Optimetrics节点,在弹出的快捷菜单中选择Add-->Parametric命令,打开Setup Sweep Analysis对话框。单击该对话框中的Add按钮,打开Add/Edit Sweep对话框,在Variable下拉列表中选择变量L,选择Linear step 单选按钮,填写其他参数,点击Add按钮,OK,依次确定完成添加参数扫描操作。

完成后参数扫描分析项的名称会自动添加到工程Opetmetrics下,其默认名称为ParametricSetup1.





2)、运行参数扫描分析

右键单击展开工程树下Optimetrics节点下的ParametricSetup1选项,选择Analyze 命令,运行参数扫描分析,时间较长。

3)、查看分析结果

右键工程树下Results节点,选择Create Terminal Solution Data Report--> Rectangular Plot 命令,打开设置对话框,在Category列表中选择Terminal S Parameter, Quantity 选择St(Antenna_T1, Antenna_T1),Function 中选择dB。

然后单击New Report,再单击Close,即生成即可生成下图S11分析结果:





再右键Result节点,Great Terminal Solution Data Report-->Rectangular Plot 命令,在Category列表中选择Terminal Z Parameter, Quantity 选择Zt(Antenna_T1, Antenna_T1),Function 中选择im和re。


然后单击New Report,再单击Close,即生成一组输入阻抗结果报告:




再次右击Result, Create Terminal Solution Data Report-->Smith Chart 打开设置对话框,在Category列表中选择Terminal S Parameter, Quantity 选择St(Antenna_T1, Antenna_T1),Function 中选择none。

然后单击New Report,再单击Close,即生成Smith圆图显示的一组天线输入阻抗结果报告:




高度H和天线谐振频率、输入阻抗的关系


添加变量H, 右键Optimetrics  Add-->Parametric,打开对话框 Add,打开Add/Edit Sweep对话框:





完成后生成参数扫描分析项 ParametricSetup2.右键,选择Analyze命令,运行参数扫描分析。



 新建分析结果:



更新L参数生成的分析结果到H参数,双击Terminal S Parameter Plot 2 下的dB(St(Antenna_T1, Antenna_T1)):



1、选择Families复选框,


2、单击右下方Nominals右侧下拉菜单选择Set All Variables to Nominal,


3、单击变量H右侧的三点按钮,选择Use all values复选框


4、单击Apply Trace,完成更新:



同样更新输入阻抗



同样,Smith




间距S和天线谐振频率、输入阻抗的关系



添加倒F天线两条竖臂之间的距离S为扫描变量:



完成添加S扫描变量,运行参数扫描分析。


查看分析结果:同样更新扫描变量:


转载来源:射频百花潭







HFSS天线布局通信参数优化
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2020-09-03
最近编辑:5月前
仿真圈
技术圈粉 知识付费 学习强国
获赞 10111粉丝 21614文章 3547课程 219
点赞
收藏
未登录
4条评论
大虾米
不是在仿真就是在准备仿真的路上
3年前
以学会
回复
仿真秀1120143232
签名征集中
3年前
有料
回复
麦克斯韦妖
惠更斯的原理唱响费曼积分的歌
3年前
详细
回复
flymoon
学无止尽,勇攀高峰
4年前
挺详细
回复
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈