首页/文章/ 详情

强度丨详解航空发动机/燃气轮机转子动力学与结构动力学

10月前浏览3303
     

航空发动机

       

 航空发动机是一种高度复杂和精密的热力机械,是为航空器提供飞行所需的动力。作为飞机的心脏,航空发动机被誉为“工业之花”,它直接影响飞机的性能、可靠性及经济性,是一个国家科技、工业和国防实力的重要体现。航空发动机共有3种类型:活塞式航空发动机、燃气涡轮发动机和冲压发动机。活塞式航空发动机早期应用在飞机或直升机上,用于带动螺旋桨或旋翼。大型活塞式航空发动机的功率可达2500 kW,后来被高速性能好的燃气涡轮发动机取代,但小功率的活塞式航空发动机仍广泛用于轻型飞机、直升机及超轻型飞机。燃气涡轮发动机应用最广,包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机。涡轮螺旋桨发动机主要用于时速小于800 km的飞机;涡轮轴发动机主要用作直升机的动力;涡轮风扇发动机主要用于速度更高的飞机;涡轮喷气发动机主要用于超音速飞机。冲压发动机特点是无压气机和燃气涡轮,进入燃烧室的空气利用高速飞行时的冲压作用增压,它构造简单、推力大,特别适用于高速高空飞行。由于不能自行起动和低速下性能欠佳,限制了应用范围,仅用在导弹和空中发射的靶弹上。

     

燃气轮机

       

 燃气轮机是一种以连续流动的气体作为工质,将热能转换为机械能的旋转式动力机械。燃气轮机主要由压气机、燃烧室和涡轮三大部件组成,此外还包括起动装置、燃料系统、润滑系统、空气滤清器、进气和排气等附属系统。压气机连续地从大气中吸入空气并将其压缩,压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即进入涡轮膨胀做功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气做功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。 

 燃气轮机的工作过程除了简单循环外,还有回热循环和复杂循环。燃气轮机的工质来自大气,最后又排至大气,属于开式循环,此外还有工质被封闭循环使用的闭式循环。燃气轮机与其他热机相结合的称为复合循环装置。

 燃气轮机有重型和轻型两类。重型的零件较为厚重,大修周期长,寿命可达10万小时以上。轻型的结构紧凑而轻,所用材料一般较好,其中以航机的结构为最紧凑。燃气初温和压气机的压缩比,是影响燃气轮机效率的两个主要因素。提高燃气初温并相应提高压缩比,可使燃气轮机效率显著提高。工业和船用燃气轮机的燃气初温最高达1200℃左右,航空发动机的燃气初温超过1350℃。


   

1

转子动力学是什么?


转子动力学是研究所有与旋转机械转子及其部件和结构有关的动力学特性的学科,同时与流体力学中轴承与密封的润滑密切相关,有着极强的工程应用背景,它广泛应用于航空发动机、燃气轮机、汽轮机、压缩机、水轮机、涡轮泵、增压器、柴油机、泵、电机等各种旋转机械领域,研究范围包括振动、动态响应、稳定性、动平衡、轴承特性、密封特性、强度、疲劳、可靠性、状态监测、故障诊断和控制等方面,尤其是研究接近或超过临界转速运转状态下转子的各种动力学问题。    
 

首先看一下转子动力学分析的一些基本概念。


一、振动形式,按转子-轴承系统的输入,即振动原因可分为:


1. 强迫振动——系统受外界持续激扰作用下所产生的振动,比如转子不平衡产生的周期性的激振力下的转子振动。特点:振动的频率与激振频率相关,一般由不平衡量引起的振动为1X振动,即振动频率与转速频率一致。


有限元软件中某转子强迫振动计算结果


2. 自激振动——由系统自身的交叉耦合刚度引起的振动形式,当有一个初始振动,不需要外界向振动系统输送能量,振动即能保持下去。这种振动与外界激励无关,完全是自己激励自己,故称为自激振动。比如轴瓦自激振动(半速涡动,油膜振荡),大容量汽轮机高压转子上的间隙自激振动。其特征是:振动的频率与转速无关,而与其自然频率相关。

 
有限元软件中某转子自激振动计算结果  


二、按转子—轴承系统的动力学参数的特性可分为:


  1. 线性转子动力学分析——通过线性化处理系统,包括轴承的刚度与阻尼等,分析系统的稳态响应,能用常系数线性微分方程描述的振动。
  2. 非线性转子动力学分析——系数的阻尼力或弹性恢复力具有非线性性质,只能用非线性微分方程来描述。比如,所有的轴承作用力均为非线性力,严格来讲,与滑动轴承油膜力相关的转子动力学问题均为非线性转子动力学;还有裂纹转子的动力学分析等也属于非线性领域。


三、按振动位移的特征可分为:


  1. 横向振动—转子只作垂直轴线方向的振动。

  2. 扭转振动—转子绕其纵轴产生扭转变形的振动。

  3. 轴向振动—转子只作沿轴线方向的振动。


2

从哪方面入手学习转子动力学?


实际上,采用线性化处理的方法,可以处理大部分旋转机械工程领域遇到的转子动力学问题,给出令人满意的解释。这是因为转子上作用着的所有力大部分是线性化或者可以线性化的,例如转子动力学中对转子-轴承系统稳定性问题的研究,一般采用8个线性化的刚度与阻尼特性系数的油膜力模型,就可以得到较为准确的分析结果,可以满足在工程领域中的各种应用。因此,从事旋转机械转子动力学工程领域的技术人员以及初学者而言,可以将关注点放在线性转子动力学上。

旋转机械中如果有非线性激励源的存在,出现线性转子动力学不太好解释的现象,比如转子裂纹等,那就需要进行非线性转子动力学分析。需要说明的是,对线性转子动力学知识体系建立的越深入、掌握的越全面,后续进行非线性转子动力学分析时上手才会更容易,认识才会更清晰,二者并不矛盾。

在转子横向振动、扭转振动以及轴向振动三种振动形式中,横向振动是最为常见的振动形式。可以先从线性转子动力学的横向振动入手做起。

3

转子动力学与结构动力学有啥区别?


从定义上,结构动力学是结构力学的一个分支,着重研究结构对于动载荷的响应(如位移、应力等的时间历程),以便确定结构的承载能力和动力学特性,或为改善结构的性能提供依据。比如,风载荷作用下大型桥梁、高层结构的振动问题;车辆行进过程中由于路面凹凸不平引起的车辆振动;波浪载荷作用下轮船的动力反应或者海上钻井平台的动力反应。    

   
而转子动力学是固体力学的一个分支,研究对象为旋转机械,研究其过各阶临界转速及其工作转速下的动力学特性等问题。比如,转子系统的动力学建模及分析计算方法,转子的临界转速,振型,不平衡响应,支承转子的各种轴承的动力学特性,转子应变能,转子动平衡,转子稳定性,密封动力学,转子系统的故障机理与诊断方法,转子系统的动力学设计,转子系统的非线性振动、分叉与混沌等问题。    

   
简言之,就定义而言,两者的主要区别在于,结构动力学侧重于研究“不转”的结构件在某种载荷下的动力学反应,转子动力学主要研究“转动”的旋转机械工程领域的各种动力学问题。    

   
从基本动力学方程式上,两者的区别也较为明显。    

   

结构动力学基本方程式如下:

其中,[M], [C] 和[K] 分别是质量矩阵、阻尼矩阵和刚度矩阵;{U}为广义位移向量矩阵,是时间t的函数,其上的点表示对时间的导数;{f }为外载荷向量矩阵;

转子动力学基本方程式如下:    
   

其中,[M], [C]和[K]分别是质量矩阵、阻尼矩阵和刚度矩阵;{U}为广义位移向量矩阵,是时间t的函数,其上的点表示对时间的导数;{f }为外载荷向量矩阵;而[G]为陀螺矩阵,为实反对称矩阵,与转子的转动惯量以及转速等密切相关,是转子动力学分析的主要贡献者;[K]为刚度矩阵对称部分;[B]为刚度矩阵非对称部分(也有称作交叉耦合刚度矩阵),与旋转速度有关,是进行转子稳定性分析的重要参数。一般来讲,质量矩阵[M],陀螺矩阵[G],多与转子本身有关;而刚度矩阵[K]、阻尼矩阵[C]、交叉耦合刚度矩阵[B]则多与轴承与密封有关。

可以看出,就动力学方程式而言,两者既有相似,又有区别。转子动力学方程式较结构动力学复杂,主要在于陀螺矩阵与交叉耦合刚度矩阵,而这正是与旋转机械转子密切相关的特色。转子动力学的很多现象和问题都与这些矩阵有关。    



来源:两机动力先行
振动疲劳非线性燃烧旋转机械航空裂纹电机材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-01-08
最近编辑:10月前
两机动力先行
其它 聚焦航空发动机/燃气轮机关键技术...
获赞 97粉丝 81文章 376课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈