首页/文章/ 详情

详解·日本石墨纤维公司沥青基碳纤维的发展历程、关键技术与应用

4月前浏览1504


1 日本石墨纤维公司发展历程

日本石墨纤维Nippon Graphite Fiber (NGF)公司通过利用煤焦油中所含的浸渍沥青(中间相沥青)生产沥青基碳纤维,其中煤焦油是煤碳化过程中产生的副产物。

浸渍沥青作为一种硬(重)沥青,是通过对针状焦所用的高纯度沥青进行热处理,然后使轻质成分挥发而产生的。NGF生产沥青基碳纤维所需的浸渍沥青均来自于C-Chem  Co.,  Ltd. 公司(隶属于新日铁住金化学Nippon steel &Sumikin chemical)。

1981年,日本钢铁行业巨头新日本制铁公司 Nippon  Steel 开展用于建筑和机械行业的沥青基碳纤维技术开发,其主要目的是促进煤碳化过程中产生的副产物再应用。1985年,在Hirohata  Works建立工厂用于生产沥青基碳纤维用高品质中间相沥青。

1995年,新日本制铁和新日本石油公司(现为JX Nippon Oil&Energy)(后者在航空航天,运动和休闲领域的碳纤维材料方面具有较强实力)整合了与碳纤维相关的业务成立NGF(现为新日铁材料株式会社集团公司)。此后,NGF为多元化和新兴市场提供了高质量的沥青基碳纤维。

虽然PAN基碳纤维在整个碳纤维市场占据主导性地位,然而目前市场用PAN基碳纤维拉伸模量通常为240 GPa(航空用PAN基碳纤维模量为300GPa左右),若要实现500 GPa或更高PAN基高模量碳纤维生产,则不可避免地需要更高的成本。

对于基于沥青的碳纤维,可以相对容易制备得到从50GPa至900GPa的模量的纤维。尤其是为了将沥青基碳纤维与300 GPa级PAN基碳纤维产品加以区别,NGF公司开发低模量(通用级沥青碳纤维)和高模量(中间相沥青碳纤维)碳纤维,如下图所示。

2 中间相沥青基碳纤维关键技术        
制备沥青基碳纤维关键是获得高品质可纺性沥青原料,为了将C-Chem公司生产的浸渍沥青加工成具有可纺性的沥青原料,NGF公司首先对原料进行氢化处理(又称加氢催化处理)。
氢化处理可以将含有硫和氮元素的化合物去除,进而改变浸渍沥青的分子结构,从而将其转化为六元环碳结构。氢化处理后对原料进一步热聚合加工,以及高精度蒸馏方法去除杂质,从而获得性能优异、可纺性良好的沥青原料(流程如下图所示)。
由于沥青属于易石墨化碳,因此通过加热可将沥青内部的六元环碳转化为石墨晶体,而随着晶体的生长,其沥青基碳纤维的拉伸强度和拉伸模量随之增加。
如果采用各向同性沥青原料,其内部结构无法充分转化为石墨晶体,即使进行热处理,也不会产生完善的石墨结构。但对于中间相沥青(又称各向异性沥青)而言,即使在液态下,也可以通过加氢处理来调整中间相沥青的分子结构,以制造规则取向的液晶分子结构。
因此,各向同性沥青原料只能用于加工低模量沥青基碳纤维(即:通用级沥青基碳纤维),而中间相沥青可以制备高模量、高导热沥青基碳纤维(即:中间相沥青基碳纤维),两者纤维截面结构如下所示。

在获得可纺性沥青原料的基础上,通过纺丝、不融化、碳化、石墨化以及表面处理即可制备高性能沥青基碳纤维,大致流程如下图所示。

在沥青纺丝过程中,沥青原料经过纺丝制备得到直径约10μm的纤维的沥青纤维,在纺丝过程中通过喷丝孔配置和搅拌方法可实现结构取向排列;同时,通过控制晶体取向和层间排列等可以优化诸如模量和强度之类的物理性能(图4)。

目前世界上只有三家公司可以使用中间相沥青作为纺丝材料来生产高性能碳纤维。但是只有NGF公司可以生产出晶体取向可控、不含缺陷结构(如下图横断面断裂缺陷)的高性能沥青基碳纤维。

对于丝束规格为12k即含有12,000根单丝的沥青纤维而言,由于其具有较低的软化点(300°C),当对纤维进行高温热处理时会导致熔融。为了实现沥青纤维不熔不融,预先添加氧和其他元素以消除氢和其他杂质元素,同时通过精确控制用于提高软化点的化学反应来提高分子键合能力。
不熔化纤维经过无氧状态的高温处理,以除去碳以外的杂质和元素,并通过进一步提高热处理温度以改善模量和强度。表面处理主要用于提高碳纤维与树脂界面结合能力。
3 中间相沥青基碳纤维应用        
为了满足各种应用,NGF公司提供了各种基于沥青基碳纤维的原料,例如连续碳纤维(高性能)、短纤(低模量)、研磨碳纤维,以及通过浸渍热固性树脂制成的纱线,织物和预浸料(下图所示)。

目前NGF公司生产的通用级沥青基碳纤维(拉伸模量50〜150 GPa)越来越多的用于高尔夫球杆和鱼竿领域。

生产难度相对较大的中间相沥青基碳纤维(拉伸模量600 GPa或更高),目前已经用于液晶和半导体领域,以及各种印刷和成膜辊中零热变形辊结构,此外在机器人部件和建筑加固部件也获得应用。而高模量沥青基碳纤维在轻量化、高刚度需求的自行车赛车的车架上也实现应用。

大型机械机床的长梁很重,由于振动会降低 制造精度。因此,采用具有高减振能力的轻质碳纤维-增强复合材料可以有效降低机床长梁的重量,并提高机械加工的精度(如下图所示)。

中间相沥青基碳纤维具有高导热性,加工成复合材料后,可以将其热膨胀系数降至零,沥青基碳纤维与其他材料热导率、热膨胀系数对比如下图所示。
基于该特性,目前在温度波动高达60%的太空中工作的电子设备、太阳能电池板部件以及人造卫星天线部件的热辐射部件等均已采用中间相沥青基碳纤维。
由于中间相沥青基碳纤维兼具了高模量(900 GPa)和高导热(1000 W)等特性,因此为了促进沥青基碳纤维的应用,NGF公司从两个方向开拓市场。
一是在工业领域逐渐用碳纤维替代金属材料,具有高刚性的轻质沥青基碳纤维可有助于减轻生产设备和装置的重量;二是电子产品领域,随着对电子设备装置中更高功能性和更高密度的需求的增长,中间相沥青基碳纤维的高散热能力获得青睐,因此可作为高导热电子材料广泛应用。
来源:中科院宁波材料所特种纤维事业部


特别声明:公 众号部分文章和图片来源于网络,发布的目的在于传递更多信息及分享,并不代表本公 众号赞同其观点和对其真实性负责,也不构成任何其他建议。版权归原作者所有,任何组织或个人对文章版权或内容的准确性存在疑议,请第一时间联系我们,我们会及时修改或删除。

广告免责声明:为了公 众号稳定发展,本公众 号会不定时承接行业广告、产品推广、会议培训推广等广告展示方式有文章前/中/后以图片形式展示、软文展示、产品链接展示等。本公 众号只提供发布平台,对广告内容的真实性或有效性不做评价,请自行判别。所有广告内容及相关事项与本公 众号无关,特此声明。

来源:碳纤维生产技术
振动断裂复合材料化学半导体通用航空航天建筑电子UM材料控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-07-17
最近编辑:4月前
碳纤维生产技术
助力国内碳纤维行业发展
获赞 29粉丝 39文章 3760课程 0
点赞
收藏
作者推荐

聚焦·新材料产业发展特征与趋势

本文摘要:(由ai生成)新材料产业是国民经济发展的基础和高技术产业的重要内涵。国内外新材料产业发展迅速,呈现高新技术驱动、绿色低碳、跨国集团主导等趋势。我国新材料产业规模约2万亿元,关键技术不断突破,区域集聚明显,支撑重大应用示范工程的作用日益显现。导语新材料是指新出现的具有优异性能或特殊功能的材料,或是传统材料改进后性能明显提高或具有新功能的材料。融入了当代众多学科先进成果的新材料产业是支撑国民经济发展的基础产业,是高技术产业的发展先导和重要内涵,逐渐成为促进经济快速增长和提升企业及地区竞争力的源动力。 我国新材料产业细分产业导向 作为《中国制造2025》制造强国战略提出的十大重点领域之一,新材料产业承担着引领材料工业升级换代,支撑战略性新兴产业发展,保障国民经济和国防军工建设等重要使命。 01 国外新材料产业发展特征与趋势 (一)各国新材料产业发展现状 新材料产业的发展水平已成为衡量一个国家经济社会发展、科技进步和国防实力的重要标志,因此世界各国纷纷在新材料领域制定出台相应的规划,竭力抢占新材料产业的制高点。 目前,发达国家仍在国际新材料产业中占据领先地位,世界上新材料龙头企业主要集中在美国、欧洲和日本,其中,日、美、德6家企业占全球碳纤维产能70%以上,日、美5家企业占全球12寸晶圆产量的90%以上,日本3家企业占全球液晶背光源发光材料产量的90%以上。 (二)各国新材料产业发展趋势 1、高新技术发展促使材料不断更新换代 高新技术的快速发展对关键基础材料提出新的挑战和需求,同时材料更新换代又促进了高技术成果的产业化。 如微电子芯片集成度及信息处理速度大幅提高,成本不断降低,硅材料发挥了重要作用;新兴产业如氮化镓等化合物半导体材料的发展,催生了半导体照明技术;LED灯的光效给照明工业带来革命性变化;太阳能电池转换效率不断提高,极大推动了新能源产业发展。镁钛合金等高性能结构材料的加工技术取得突破,成本不断降低,研究与应用重点由航空、航天以及军工扩展到高附加值民用领域。 2、绿色、低碳成为新材料发展的重要趋势 新能源产业崛起,拉动上游产业如风机制造、光伏组件、多晶硅等一系列制造业和资源加工业的发展,促进智能电网、电动汽车等输送与终端产品的开发和生产。 欧美等发达国家已经通过立法,促进节能建筑和光伏发电建筑的发展,功能材料向微型化、多功能化、模块集成化、智能化等方向发展以提升材料的性能;纳米技术与先进制造技术的融合将产生体积更小、集成度更高、更加智能化、功能更优异的产品。绿色、低碳的新材料技术及产业化将成为未来发展的主要方向。 3、跨国集团在新材料产业中仍占据主导地位 目前,世界著名企业集团凭借其技术研发、资金和人才等优势不断向新材料领域拓展,在高附加值新材料产品中占据主导地位。 尤尼明几乎垄断着国际市场上4N8及以上高端石英砂产品;信越、SUMCO、Siltronic、SunEdison等企业占据国际半导体硅材料市场份额的80%以上。半绝缘砷化镓市场90%以上被日本日立电工、住友电工、三菱化学和德国FCM所占有。 DuPont、Daikin、Hoechst、3M、Ausimont、ATO和ICI等7家公司拥有全球90%的有机氟材料生产能力。美国科锐(Cree)公司的碳化硅衬底 制备技术具有很强市场竞争力,飞利浦(Philips)控股的美国Lumileds公司的功率型白光LED国际领先,美、日、德等国企业拥有70%LED外延生长和芯片制备核心专利。 小丝束碳纤维的制造基本被日本的东丽纤维公司、东邦公司、三菱公司和美国的Hexel公司所垄断,而大丝束碳纤维市场则几乎由美国的Fortafil公司、Zoltek公司、Aldila公司和德国的SGL公司4家所占据。美铝、德铝、法铝等世界先进企业在高强高韧铝合金材料的研制生产领域居世界主导地位。美国的Timet、RMI和Allegen Teledyne等三大钛生产企业的总产量占美国钛加工总量的90%,是世界航空级钛材的主要供应商。 4、新材料研发模式变革成为关注的重点 21世纪以来,发达国家逐渐意识到依赖于直觉与试错的传统材料研究方法已跟不上工业快速发展的步伐,甚至可能成为制约技术进步的瓶颈。因此,亟需革新材料研发方法,加速材料从研发到应用的进程。 例如,美国政府“材料基因组计划”(MGI),其新材料从发现到应用的速度至少提高一倍,成本至少降低一半,旨在发展以先进材料为基础的高端制造业,并继续保持其在核心科技领域的优势。 (三)产品和技术发展趋势 新材料关键核心技术的突破,推动新材料的产品最终实现多功能化、高性能化、智能一体化,进而提高新材料产品的附加值、提高其市场综合竞争力。 1、高端金属结构材料 新型金属新材料一直是世界新材料发展的主要材料之一,在未来一段时间内,人造高端医用金属材料、新型铝合金材料、镍钛智能合金材料等将成为高端金属结构材料的主要发展方向。 一是随着英国牛津大学发现了一种具有超常受压扩展能力的新材料——金氰化锌,新型光学压力传感器和人造肌肉等将成为高端金属结构材料的重要发展方向之一; 二是随着加拿大开发新型铝合金技术新计划的实施,未来将重点应用于小汽车、卡车、挂车、公交车以及火车等交通运输设施上,用于减轻交通运输设施的车重,提高运输效率; 三是随着德国萨尔大学研制出的镍钛智能合金材料,将来会大量运用于医用人工器官等领域,尤其是人工肌肉的制造等领域。 2、碳纳米半导体材料 近几年来,碳纳米半导体材料逐步展现替代潜力,逐渐向实用化进发。第一代半导体硅材料在大道物理极限之前仍有一定发展潜力,通过改变材料和器件的结构,如绝缘体上的硅技术、多栅极晶体管技术和三维IC技术等,硅基半导体仍然能在一定程度上维持摩尔定律的发展。 此外,基于多栅极晶体管技术的22nm工艺已经进入了批量生产阶段,硅基14nm工艺产品也已经进入批量生产。 3、第二代半导体Ⅲ-Ⅴ族半导体材料 目前在高频率晶体管领域应用较广泛,但作为逻辑电路晶体管材料仍然处于研究过程当中。Ⅲ-Ⅴ族半导体在集成电路中的实际使用可能将在2015-2018年间实现。 第三代半导体碳化硅、氮化镓等已经在功率半导体器件领域逐渐商业化,但碳化硅功率器件目前成本较高,性能还有待进一步优化。 4、石墨烯材料 在电子器件、光子期间、能源、复合材料等领域业得到广泛的应用研究。因制备石墨烯而获诺贝尔奖的科学家NOVOSELOV,在2012年率领科学家团队对石墨烯的应用前景做出了预测并勾勒了其未来发展路线图,认为石墨烯的电子和光子学应用在2015年实现,而部分应用则要到2025-2030年才能实现。 但发展过程中,带隙、接触电阻问题,以及高质量低成本石墨烯的制备等问题,仍是巨大的挑战。 5、智能材料 主要是指电子信息材料、光电材料。智能材料的研究使现行的一些工程问题和安全可靠性检测的概念发生了根本的变化,甚至可能萌发划时代的技术革新。 智能材料的研究已经取得了许多重要进展,以具有传感、执行等功能的电子陶瓷集成在一起而制作的机敏材料及相关结构系统,已在高级轿车和家用电器中获得应用。 02 国内新材料产业发展特征与趋势 (一)产业发展概况 1、产业规模快速增长 我国新材料产业体系已经初步形成,发展形势良好。随着《“十三五”国家战略性新兴产业发展规划》和《新材料产业“十三五”发展规划》等国家层面战略规划的出台,为新材料产业的发展创造了良好的政策环境。 目前,我国新材料产业规模约2万亿元。新材料产业在金属材料、纺织材料、化工材料等传统领域基础较好,稀土功能材料、先进储能材料、光伏材料、有机硅、超硬材料、特种不锈钢、玻璃纤维及其复合材料等产能居世界前列。 半导体照明产业形成了从上游外延材料生长与芯片制造、中游器件封装到下游集成应用的比较完整的研发与产业体系,产业规模超过5000亿元。节能玻璃材料产业规模达300亿元;稀土功能材料产量约占全球份额80%;主要功能陶瓷元器件产品的产业规模增长到250亿元。 2、关键技术实质突破 通过产学研用结合,许多重要新材料技术指标大幅提升,研究成果推广应用。大直径硅材料在缺陷、几何参数、颗粒、杂质等控制技术方面不断完善,300mm硅材料可满足45nm技术节点的集成电路要求,已成功拉制450mm硅单晶。 人工晶体材料经过多年的发展,偏硼酸钡和三硼酸锂等紫外非线性光学晶体研究居国际领先水平并实现了商品化;激光晶体、太阳能电池关键技术指标达到国际先进水平,光伏发电成本降到1元/kWh)以下。 锂离子电池正负极材料、电解液均满足小型电池要求,隔膜、电解质锂盐等关键材料替代进口;超高分子量聚乙烯纤维大幅缩小与发达国家差距。T300级碳纤维实现了稳定生产,单线产能提高到1200t;T700和T800级碳纤维实现了批量供货能力已开始应用于航空航天装备;开发出具有自主知识产权的铜带、铜管拉铸技术以及铜铝复合技术;海底管线钢X65、X70、X80及厚壁海洋油气焊管、化学品船用中厚板均已实现国产化,低成本石墨烯已开始生产,并应用于触摸屏、导热膜等信息通讯器件。 关键技术的不断突破和新材料品种的不断增加,使我国高端金属结构材料、新型无机非金属材料、高性能复合材料保障能力明显增强,先进高分子材料和特种金属功能材料自给水平逐步提高。 3、区域集聚态势明显 积极推动新材料产业基地建设,加强资源整合,区域特色逐步显现,区域集聚态势明显,初步形成“东部沿海集聚,中西部特色发展”的空间格局。 长三角已形成包括航空航天、新能源、电子信息、新型化工等领域的新材料产业集群。 珠三角新材料产业集中度高,已形成较为完整产业链,在电子信息材料、改性工程塑料、陶瓷材料等领域具有较强优势。 环渤海地区技术创新推动作用明显,在稀土功能材料、膜材料、硅材料、高技术陶瓷、磁性材料和特种纤维等多个领域均具有较大优势。 内蒙古稀土新材料,云贵稀贵金属新材料,广西有色金属新材料,宁波钕铁硼永磁材料,广州、天津、青岛等地的化工新材料,重庆、西安、甘肃金昌、湖南长株潭、陕西宝鸡、山东威海及太原等地的航空航天材料、能源材料及重大装备材料,江苏徐州、河南洛阳、江苏连云港等的多晶硅材料产业等也都形成了各自的区域特色。 4、支撑作用日益显现 新材料支撑重大应用示范工程的作用日益显现,为我国能源、资源环境、信息领域的发展提供了重要的技术支撑,是建设重大工程、巩固国防军工的重要保障。 各级政府组织实施了节能产品惠民、十城万盏、金太阳、物联网等重大应用示范工程,2030年我国新能源汽车市场保有量有望达到1500万辆。膜材料在海水淡化方面已经获得应用,初步形成了反渗透海水淡化的生产能力,成为我国沿海地区供水安全保障体系的重要组成部分。 以有色金属结构新材料、高温合金和碳纤维及其复合材料为代表的高性能结构材料,为高速铁路、大飞机、载人航天、探月工程、超高压电力输送、深海油气开发等重大工程的顺利实施做出了贡献。 (二)行业发展趋势 传统材料企业转型升级速度加快。我国材料企业中,80-90%都是传统金属类和化工类的材料企业,这两类企业市场份额最大,是材料行业的主导力量。未来10年,普通产品市场需求的下滑及对高端产品的需求,将倒逼这两类传统材料企业加快技术升级与改造,其转型升级速度将明显加快。 其中,金属类材料企业转型升级的发展方向是大力发展如高纯金属、非晶合金等特殊金属材料,以及可用于核电、超超临界火电、海洋工程、汽车工程、轨道交通方面的高品质特殊钢;化工类材料企业转型升级的发展方向主要是合成橡胶、工程塑料、有机硅材料和氟材料。 1、逐渐向高端、健康、绿色方向发展 未来十年,高端装备、汽车制造、电子信息、新能源、节能环保、新型建筑、生物医用、智能电网、3D打印等新兴产业领域预计将保持较快发展趋势。因此,带动新兴产业发展的高端材料是未来我国新材料产业发展的主要方向,主要包括高品质特殊钢、高强轻质合金、高性能纤维和复合材料、航空用陶瓷材料及航空级3D打印金属粉末材料等。 此外,随着人民对健康、环保等需求的提高,对生物医用材料、绿色环保材料、新型建筑材料和高性能膜材料等绿色健康材料的需求也越来越多。 2、电子信息、锂电池产业新材料有望加速增长 随着新一代信息技术产业的发展,电子信息材料的研发生产是未来发展的一个重要方向,低缺陷12英寸及以上电子级单晶硅、超薄8英寸及以上绝缘体上硅(SOI)、宽禁带半导体与器件,以及AMOLED有机发光材料及器件、大尺寸光纤预制棒、光学膜、集成电路特种气体都将逐渐实现产业化应用,部分产品也将逐渐取代进口。 锂电池材料方面,正极材料、负极材料、导电浆料、电池隔膜企业不断涌现,核心技术逐步被研发成功,并实现产业化,发展潜力巨大。“十三五”期间,电子信息、锂电池产业新材料这两个领域,有望实现加速增长。 3、高强轻质合金新材料可能得到大规模应用 高性能的铝合金、镁合金、钛合金在航空航天、军工、汽车、电力设备等领域的应用越来越广泛,特别是随着汽车产业的发展,高性能合金在车辆上应用量快速增长,其市场需求越来越多。 随着电力装备的高端化、智能化发展,铝合金电缆技术和产品已逐步被市场熟知并接受,铝合金材料凭借其性能优势,在电力行业应用也将日益广泛,“以铝代铜”的相关产品,也逐步应用于电线电缆、变压器、汽车热交换器、空调散热器等多方面,未来发展不可限 量。 (三)产品和技术发展趋势 随着我国新材料材料技术的突破,在很大程度上使新材料产品实现智能化、多功能化、环保、复合化、低成本化、长寿命及个性化订制。这些产品会加快信息产业和生物技术的革命性进展,也能够给制造业、服务业及人们生活方式带来重要影响。 同时,新材料的开发与应用联系更加紧密,根据新材料市场的需求,加快新材料研制速度,提高材料的使用性能,便于新材料迅速走向实际应用,减少材料的“性能浪费”。注重军民融合,开拓军民两用产品市场是新材料发展的趋势。宽禁带碳化硅、氮化镓基的下一代射频高能效高功率器件即将成为有潜力的军民融合的高端电子产品。 1、电子功能材料 “十二五”以来,我国新一代电子功能材料根据市场需求,开始发展低缺陷12英寸及以上电子级单晶硅、超薄8英寸及以上绝缘体上硅(SOI)、宽禁带半导体与器件,以及AMOLED有机发光材料及器件产业化和示范应用,高能射线探测用碲锌镉半导体材料与器件实现产业化,碲锌镉晶体在工业CT及专用探测器等领域逐步实现规模应用。 2、表面功能(纳米)材料 纳米技术,是二十一世纪材料产业的重要基础技术之一。当前,我国在纳米产业方面已经具备了相当的基础,未来10年,是纳米技术发展和应用的黄金时期,特别是在光电、锂电池、环保、建筑等重要行业,有可能获得突破性进展。 纳米材料的发展重点是纳米碳材料(如碳纳米管、纳米量子点),纳米能源材料,氮化镓等第三代半导体材料,纳米银、纳米氧化铝等纳米金属材料,纳米功能复合材料以及纳米生物医用材料等领域。 3、功能玻璃材料 随着新一代信息技术产业的发展,功能玻璃材料的研发生产成为新材料的重要研究方向。目前我国在新型TFT显示超薄玻璃基板材料、高性能光纤预制棒材料、高性能特种光纤、高性能低成本石墨烯粉体及高性能薄膜材料方面均有所突破,并开始在新型显示、先进电池等领域有所示范应用。 4、先进碳材料 先进碳材料产业主要包括碳纤维、石墨烯、石墨负极材料、碳纳米管等。碳纤维方面,预计未来3-5年,国产T700碳纤维预计可实现低成本稳产及市场大规模应用,而T800也有望开始应用于国产高端装备。 石墨烯方面,在风电防护涂料及手机触控屏上的应用也正在稳步推进,产能不断扩大,即将迎来爆发式增长。随着锂电池产业的飞速发展,石墨负极材料、碳纳米管导电浆料在锂电池产业的应用也将快速增长。 5、高端金属材料 随着高端装备产业的逐渐兴起,我国海洋工程装备所需材料逐渐受到关注,开始研发生产钢板厚度大于180mm的高强结构钢、大型油船货油舱耐蚀钢、深海油气输送用厚壁管线钢、超深井及低温开采急需的高性能铝合金钻杆及油套管钢,以及TA2、TC4等级钛合金材料等,已经在船舶及海洋工程装备中得到示范应用。 6、生态环境材料 随着节能环保产业的日益兴盛,以大气污染治理新材料为代表的生态环境材料成为节能环保产业的关键材料。我国已经逐步在大气污染治理新材料方面取得了一定成就。开始研发生产工业用高性能PM2.5过滤材料、高性能脱硝材料、烟气NOx脱除材料等。 另外,工信部印发的《产业关键共性技术发展指南(2017年)》中明确指出,要开发用于工业废水处理的矿物功能材料深加工技术,包括膨润土等矿物功能材料的改性、改型技术;增加矿物功能材料比表面积、调整表面电荷等技术;矿物功能材料在工业废水处理中的应用技术。 来源:战略前沿技术特别声明:公 众号部分文章和图片来源于网络,发布的目的在于传递更多信息及分享,并不代表本公 众号赞同其观点和对其真实性负责,也不构成任何其他建议。版权归原作者所有,任何组织或个人对文章版权或内容的准确性存在疑议,请第一时间联系我们,我们会及时修改或删除。广告免责声明:为了公 众号稳定发展,本公众 号会不定时承接行业广告、产品推广、会议培训推广等广告展示方式有文章前/中/后以图片形式展示、软文展示、产品链接展示等。本公 众号只提供发布平台,对广告内容的真实性或有效性不做评价,请自行判别。所有广告内容及相关事项与本公 众号无关,特此声明。来源:碳纤维生产技术

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈