首页/文章/ 详情

全面掌握stm32的GPIO,看这篇就可以了!

1年前浏览606

全面掌握stm32的GPIO,看这篇就可以了!

                             
1 初学者重要提示                              
  1.   本文主要是以stm32H7系列为主。

  2.   对于不使用的引脚,推荐设置为模拟模式,悬空即可。

  3.   GPIO的速度等级高的时候,最好使能IO补偿单元。


2 GPIO功能简介

STM32H7的GPIO特性如下:

  •   输出状态:开漏/推挽 + 上拉/下拉电阻。

  •   通过输出数据寄存器(GPIOx_ODR)或者外设(GPIO设置为复用模式时)输出数据。

  •   GPIO速度等级设置。

  •   输入状态:浮空,上拉/下拉,模拟。

  •   通过输入数据寄存器(GPIOx_IDR)或者外设(GPIO设置为复用模式)输入数据。

  •   通过寄存器GPIOx_BSRR实现对寄存器GPIOx_ODR的位操作。

  •   通过配置寄存器GPIOx_LCKR的锁机制,实现冻结IO口配置。

  •   每两个时钟周期就可以翻转一次IO。

  •   高度灵活的引脚复用功能,允许IO引脚既可以做GPIO也可以做功能复用。


3 GPIO功能模式分析(重要)

STM32H7的GPIO端口可以配置为如下的8种模式:

  •   输入浮空

  •   输入上拉

  •   输入下拉

  •   模拟功能

  •   具有上拉或下拉功能的开漏输出

  •   具有上拉或下拉功能的推挽输出

  •   具有上拉或下拉功能的复用功能推挽

  •   具有上拉或下拉功能的复用功能开漏

由于上拉和下拉是可选配置,对应的HAL库配置使用下面6种就可以表示:

  •   GPIO_MODE_INPUT 输入模式

  •   GPIO_MODE_OUTPUT_PP 推挽输出

  •   GPIO_MODE_OUTPUT_OD 开漏输出

  •   GPIO_MODE_AF_PP   复用推挽

  •   GPIO_MODE_AF_OD  复用开漏

  •   GPIO_MODE_ANALOG 模拟模式


3.1 推挽输出

 

推挽电路是两个参数相同的三极管或 MOSFET,以推挽方式存在于电路中。电路工作时,两只对称的开关管每次只有一个导通,导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级提高电路的负载能力。相对于开漏输出模式,推挽输出最大优势是输出高电平时,上升时间快,电压驱动能力强。 


3.2 开漏输出

 

开漏端相当于 MOS 管的漏极(三极管的集电极),要得到高电平状态必须外接上拉电阻才行,因此输出高电平的驱动能力完全由外接上拉电阻决定,但是其输出低电平的驱动能力很强。开漏形式的电路有以下几个特点:

  1. 输出高电平时利用外部电路的驱动能力,减少 IC 内部的驱动。

  2. 开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平。如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。上拉电阻的阻值决定了逻辑电平转换的速度。阻值越大,速度越低,功耗越小。

  3. 开漏输出提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。

  4. 可以将多个开漏输出连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系,即“线与”。可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑 0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为 0,只有都为高电平时,与的结果才为逻辑 1。


3.3 复用推挽和开漏

复用指的是GPIO切换到CPU内部设备(比如SPI,I2C,UART等电路),也就是GPIO不是作为普通IO使用,是由内部设备直接驱动。推挽和开漏的特征同上。


3.4 四种输入模式

 

通过上面的引脚结构图可以得到如下三种方式

  •   浮空输入:CPU内部的上拉电阻、下拉电阻均断开的输入模式。

  •   下拉输入:CPU内部的下拉电阻使能、上拉电阻断开的输入模式。

  •   上拉输入:CPU内部的上拉电阻使能、下拉电阻断开的输入模式。

 

而模拟输入模式是GPIO引脚连接内部ADC。

 


4 GPIO的拉电流负载和灌电流负载能力

这里先普及点小知识,什么是拉电流负载,什么是灌电流负载。

  •   拉电流负载一种负载电流从驱动门流向外电路,称为拉电流负载。比如使用STM32H7的GPIO直接驱动LED就是拉电流形式。

 

  •   灌电流负载负载电流从外电路流入驱动门,称为灌电流负载。比如下面这种形式的LED驱动电路

 

有了上面这些知识后再来看STM32H7的IO驱动能力(截图来自STM32H7参考手册):

 

通过上面的截图可知:STM32H7总的拉电流和灌电流不可超过140mA,单个引脚最大不可超过20mA,这个知识点,大家要知道。

5 IO补偿单元,用于高速

IO补偿单元用于控制I/O通信压摆率(tfall / trise)以此来降低I/O噪声。当前STM32H7的速度等级可以配置为以下四种:

  
  GPIO_SPEED_FREQ_LOW         ((uint32_t)0x00000000U)  /*!< Low speed     */
  GPIO_SPEED_FREQ_MEDIUM      ((uint32_t)0x00000001U)  /*!< Medium speed  */
  GPIO_SPEED_FREQ_HIGH        ((uint32_t)0x00000002U)  /*!< Fast speed    */
  GPIO_SPEED_FREQ_VERY_HIGH   ((uint32_t)0x00000003U)  /*!< High speed    */
                             

使用后两种速度等级的话,最好使能IO补偿单元。


6 GPIO兼容CMOS和TTL电平

CMOS和TTL电平兼容问题也是一个比较重要的知识点

 


7 不使用的引脚推荐设置为模拟模式

主要从功耗和防干扰考虑。

  •   所有用作带上拉电阻输入的 I/O都会在引脚外部保持为低时产生电流消耗。此电流消耗的值可通过使用的静态特性中给出的上拉 / 下拉电阻值简单算出。

  •   对于输出引脚,还必须考虑任何外部下拉电阻或外部负载以估计电流消耗。

  •   若外部施加了中间电平,则额外的 I/O 电流消耗是因为配置为输入的 I/O。此电流消耗是由用于区分输入值的输入施密特触发器电路导致。除非应用需要此特定配置,否则可通过将这些I/O 配置为模拟模式以避免此供电电流消耗。ADC 输入引脚应配置为模拟输入就是这种情况。

  •   任何浮空的输入引脚都可能由于外部电磁噪声,成为中间电平或意外切换。为防止浮空引脚相关的电流消耗,它们必须配置为模拟模式,或内部强制为确定的数字值。这可通过使用上拉 / 下拉电阻或将引脚配置为输出模式做到。

综上考虑,不使用的引脚设置为模拟模式,悬空即可。

素材来源:https://www.cnblogs.com/armfly/p/10818969.html

说明:本文来源网络;文中观点仅供分享交流,不代表本***立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

来源:电力电子技术与新能源

燃料电池电源电路电磁兼容汽车电力电子MATLAB新能源芯片UM电机热设计控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-05-22
最近编辑:1年前
获赞 155粉丝 267文章 2068课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈