Adaptive Finite Element Method for Poisson Equation
Generated on: 2024-11-19 11:08:14
Theoretical Background
Problem Statement
The Poisson equation is a second-order elliptic partial differential equation:
-Δu = f in Ω
u = 0 on ∂Ω
where Ω is the computational domain, ∂Ω is its boundary, and f is the source term.
Variational Formulation
The variational form of the Poisson equation is:
Find u ∈ H¹₀(Ω) such that:
a(u,v) = (f,v) ∀v ∈ H¹₀(Ω)
where:
a(u,v) = ∫_Ω ∇u·∇v dx
(f,v) = ∫_Ω fv dx
Finite Element Discretization
The domain is triangulated and we use piecewise linear functions (P1 elements):
• The solution is approximated as: u_h = Σᵢ Uᵢφᵢ
• Test functions are: v_h = φⱼ
This leads to the linear system:
AU = b
where:
Aᵢⱼ = ∫_Ω ∇φᵢ·∇φⱼ dx
bⱼ = ∫_Ω fφⱼ dx
Adaptive Strategy
The adaptive procedure follows these steps:
·SOLVE: Compute the finite element solution u_h
·ESTIMATE: Compute error indicators η_T for each element T
·MARK: Select elements for refinement using Dörfler strategy
·REFINE: Refine marked elements while maintaining mesh conformity
Error Estimation
We use residual-based error estimators:
η_T² = h_T² ‖f + Δu_h‖²_T + Σₑ h_s ‖[∂_n u_h]‖²_s
where:
• h_T is the element diameter
• h_s is the edge length
• [∂_n u_h] is the jump of normal derivatives across edges
__________________________________________________
Numerical Results
Iteration History
Iteration 1
Number of nodes: 200
Maximum error: 2.21e+00
Average error: 1.34e+00
Computation time:
Assembly: 0.014s
Solve: 0.000s
Error Estimate: 0.003s
Mesh Refinement: 0.103s
Final Solution and Mesh:
Convergence History:
Computation Time Statistics:
Total iterations: 5
Final number of nodes: 1376
Convergence History
Iteration | Maximum Error | Average Error |
1 | 2.21e+00 | 1.34e+00 |
2 | 1.53e+00 | 9.78e-01 |
3 | 1.14e+00 | 6.83e-01 |
4 | 8.12e-01 | 5.24e-01 |
5 | 5.59e-01 | 3.61e-01 |
Timing Statistics
Stage | Average Time (s) | Total Time (s) |
Assembly | 0.309 | 1.544 |
Solve | 0.001 | 0.005 |
Error Estimate | 0.017 | 0.087 |
Mesh Refinement | 1.685 | 6.742 |
Total | 1.892 | 9.460 |
---------------
1.cursor确实很强大,整个流程基本上不需要会编程,之所以选择python就是因为我本身不太熟悉。全程包括安装,使用,安装库,全部给出指令、代码,只需要按照提示流程来执行;
2.对于简单的小程序而言,cursor非常快速,但是如果修改次数过多,会导致上下文较多,有时候会比较慢,比如我做了一个二维网格可视化的小工具,最后就直接不回答了。小工具的结果也秀一把吧(整个过程花了2个小时)。
3.可以不会编程,但是必须得知道如何实现,比如实现泊松方程的过程非常容易,使用结构化的三角形网格实现,但是在自适应过程中,cursor在局部加密网格中始终错误,最终是一步一步给他说如何局部加密成有效网格,多次迭代后才得到如上的结果。
4.可能使用技巧还有很多没有挖掘,接下来会逐步尝试用cursor实现更加复杂的编程。