目前,用于汽车结构碰撞的虚拟仿真模型主要包括:集中参数模型、多刚体模型、壳单元模型。本文提出了塑性铰梁骨架模型,并创建了具有任意横截面形状的复杂薄壁梁结构,例如:开口、单腔室、双腔室、三腔室和四腔室等汽车车身常用的横截面形状。
本文建立的车身梁骨架模型,可用于汽车概念设计阶段的碰撞分析。“小幅牺牲精度,大幅提升效率” 设计理念可加速产品的正向设计。以上设计方法由团队自主开发的CarFrame软件实现。
典型的复杂断面形状如下图所示,其关键性能包括:面积、形心、弯曲惯性矩、扭转惯性矩等。
传统的梁单元接头处连接为刚性连接。本文采用塑性铰连接,以提高求解精度。创建塑性铰单元,需要梁的广义力—广义位移曲线(包括:轴向碰撞力—位移曲线,弯矩—转角曲线和扭矩—转角曲线),所以首先调用LS-Dyna求解之,如下图所示。
通过以上曲线,可创建塑性铰接头单元。其由一个压缩弹簧,两个弯曲弹簧和一个扭转弹簧组成,如下图所示,其中塑性铰接头单元为零长度且无质量,位于梁单元的两端。
上述方法嵌入到CarFrame中。具体应用过程为:首先,设计出各复杂横截面薄壁梁的截面形状;其次,CarFrame调用LS-Dyna自动求解薄壁梁的广义力—广义位移曲线,并创建塑性铰接头;最后,使用这些薄壁梁及塑性铰接头创建骨架模型,CarFrame生成.k文件并调用LS-Dyna进行碰撞求解。
以下算例验证了上述方法(注:所有算例均在Intel Core i7 CPU和8 GB内存的笔记本电脑上求解)。
薄壁直梁可用于简化模拟汽车前纵梁的正碰压溃。实验装置如下图所示,用于测试冲击载荷下直梁的变形和位移。详细有限元模型为壳单元网格。简化模型为11个薄壁梁单元,梁单元之间的每个节点处建立轴向塑性接头。
上图分别为三种模型的变形,可以看出头部的折叠变形几乎相同。下图表明,三种模型的碰撞位移趋势基本一致,最大误差可以控制在5%以内。此外,详细和简化模型的计算时间分别为499秒和5秒。简化模型的计算成本大大降低,且精度完全可以被工程接受。
下图中,详细模型为壳单元网格,简化模型为具有9组截面形状的梁骨架。提取A、B、C点侵入位移和速度,对两种模型进行对比。
如上图所示,详细和简化模型在碰撞终止时的变形基本一致。下表显示出,侵入量和侵入速度的最大误差,分别为2.95%和9.88%。此外,详细和简化模型的最大吸收能量分别为32.0 kJ和33.9 kJ,误差仅为5.60%。因此,在概念设计阶段,简化模型可以用来评价侧围结构的性能。
本算例同样验证了简化模型的有效性。碰撞过程中的运动轨迹,位移、支反力和能量曲线都吻合良好。计算精度和实效性证明:简化的塑性梁骨架模型可以满足概念设计的快速碰撞分析需求。
碰撞过程的动态图,及各物理量随时间变化曲线,如下图所示。
汽车正向设计与轻量化团队
左文杰
吉林省长春市人民大街5988号
吉林大学机械学院力学系