首页/文章/ 详情

COMSOL电池模拟学习经验

3月前浏览3056


建立基于工艺参数的模型预测电极结构,然后通过基于电极结构特性的模型预测电池性能,打通从从一个工艺再到下一个工艺,最终到电池性能的全链条模型的过程非常难,我一直在学习。这里分享一下自己学习COMSOL电池模拟的经验。


在学习 COMSOL 电池模拟的过程中,我自己觉得非常有效的方法,在这里分享给大家:


1. 以官方资料和案例为基础

 

COMSOL 官方提供了丰富的学习资料和案例库,这些是我们学习的宝库。从官网的文档、教程,到案例库中的详细示例,都为我们提供了从入门到精通的指引。通过仔细研究这些官方资料,我们可以快速了解软件的基本操作和功能,以及对应模型的基础理论,模型设置方法,问题解决措施,项目模拟思路。

 

2. 结合项目,从简单的案例入手

 

在初步熟悉了软件的基本操作后,建议大家立即结合自己的项目需求进行实践。先从一个最简单的案例开始,比如一个基础的电池模型构建和模拟。通过实际操作,我们可以更加深入地熟悉软件的工作流程和参数设置,为后续复杂模型的构建打下坚实的基础。

 

3. 理论与实践结合

 

电池模拟涉及到许多基本理论和重要公式,例如BV方程、能斯特方程、欧姆定律等。在学习过程中,我们要基本理解这些理论知识,并将它们与软件中的模中的模型设置方法关联起来,弄懂每一个参数在软件中对应的设置位置和方式。这样不仅可以加深我们对理论知识的理解,还能让我们更加熟练地运用软件进行模拟分析。


以上就是我觉得有效的学习方法。最后,我看到Comsol官方最近又安排了一个直播课程,强烈推荐给大家,他们的视频课,案例和其他资料基本上都是免费的,对咱们的学习非常有用。


随着电池在交通、能源、消费电子等领域的广泛应用,对电池的性能、寿命和安全性等方面提出了更高的要求。多物理场仿真技术作为一种高效的方法,可以对电池中存在的电化学、传热、结构力学等多物理场现象进行耦合仿真分析,帮助研究者和工程师更好地理解电芯的工作原理,分析各种影响因素,预测电池使用寿命,优化电芯关键参数,助力电池产品研发。

活动信息

会议时间:8月15日(星期四)上午10:00—11:30

会议形式:在线直播


报名方式:扫描下方二维码或点击文末“阅读原文”,免费注册

活动内容

本次活动将介绍 COMSOL Multiphysics® 多物理场仿真软件在分析电池性能、寿命和安全等方面的应用,包括,倍率性能、DCR、能量密度、功率密度、循环和日历寿命预测、热管理、热失控和热蔓延等方面的仿真分析。我们还将简要介绍钠离子电池、液流电池等其他类型电池以及电池包热管理的相关仿真。最后,我们将展示 COMSOL 的代理模型和仿真 App 功能在电池仿真中的应用。


活动最后将设有问答环节,您可以与演讲嘉宾进行交流和探讨。


期待您的参加,同时欢迎转发邀请行业内及相关领域的同事和好友共同参会!


公众 号持续更新和分享锂电技术知识与资讯,终于获得了留言功能,前往屏幕最下方即可写下留言,期待与大家更多地留言互动交流,感谢朋友们继续支持与关注。


更多的内容,也可以在公 众号搜索阅读。请大家继续支持本公 众号,并提出宝贵的意见,期望朋友们在这里有所收获。

来源:锂想生活
Comsol化学电子消费电子理论储能
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-08-14
最近编辑:3月前
堃博士
博士 签名征集中
获赞 94粉丝 118文章 367课程 0
点赞
收藏
作者推荐

AI用于电池研究,是炒作还是现实?

做好电池太难了电池研发是一个复杂的多变量问题,涉及到性能、使用寿命、安全性、成本、环境影响和资源问题等多个方面。目前的研发模式是以材料为中心,先合成材料,制造电解液和电极,组装电池,最后评估性能。这样的模式就有10的100次方种方法来合成活性材料和制备电解液,这是一个天文数字,无法想象。电极制造参数的选择也有无限多的可能性,还有几十种可能的电池形式。电池研发数据量呈指数级增长。例如巴斯夫(BASF)宣称,他们每天产生超过7000万个电池表征数据,法国电化学储能协会已经产生了约1000万个电池表征数据,每年能够1产生1PB的电池数据。科学出版物已经远超30000篇锂离子电池期刊,而且这个数字还在迅速增长。如果一个研究人员每年阅读200篇论文,至少需要花150年的时间来阅读今天所有的锂离子电池论文。而人工智能和机器学习能够帮助研究人员有效地解决电池研发参数和数据挑战。AI到底可以干什么材料设计与合成应用利用自基于物理的模拟、实验等的高保真数据,AI可以在相对大量的变量之间找到复杂的非线性关系,有助于对具有相似特性的材料进行分类或预测新材料的目标特性。从而可用于搜索具有特定目标特性的新电池材料,例如电极材料、电解液或者固态电解质等。AI还可以用于材料的多尺度建模与加速模拟,对现有文献数据(或文本)进行挖掘与分析等。电极和电池制造中的应用电极和电池制造依赖于高度复杂的工艺,需要优化许多参数:电极和浆料配方、活性材料的化学性质、添加剂和溶剂、粉末预混合和浆料混合的时间和速度、涂覆速度和涂布间隙、干燥蒸发时间和温度、压延压力、所用设备类型、化成方案等。AI基于ML等方法可以处理多维数据集,并更好的理解制造参数的相互依赖性,从而加速和指导制造过程优化。结合AI的强大潜力,最终目标就是形成智能化的先进制造业和工业4.0。材料和电极结构表征由于检测器技术的快速发展,表征数据生产比几十年前高出几个数量级。AI各种算法在数据预处理和分割、特征检测、模式识别以及真实的实时表征实验中可以辅助电极和材料表征。人工智能用于图像处理,目标是识别特定的图像特征并通过分割步骤将其提取出来,还可用于辅助光谱和衍射图案的复杂分析,以及辅助原位/离线的实验数据分析。例如AI可以自动进行XPS、XRD等谱图,SEM/TEM/XCT图像等各种表征数据的分析与处理。电池诊断和预测为了确保电池在其整个使用寿命期间的可靠性,基于其电化学特性的真实的实时准确诊断非常重要,电池状态参数包括电池荷电状态(SOC)、健康状态(SOH)、循环寿命等。电池寿命预测是一个复杂而重要的研究领域。在过去十年里,科学家们通过离线和在线两种方式进行了大量研究。离线预测使用历史数据,而在线预测则是在电池运行时实时收集数据。早期的研究基于半经验模型来预测电池的功率和容量损失。后来,许多研究者提出了物理和半经验模型,考虑了如SEI层增长、析锂层、活性物质损失和内阻增加等多种电池退化机制。这些模型虽然成功描述了电池的容量保持和内阻增加,但要开发一个全面考虑所有退化模式及其与热和机械耦合的模型,仍然面临挑战,因为这些因素会导致计算成本高昂,而且模型的普适性和长期预测的准确性也有待进一步提高。AI各种算法在电池的诊断和预测中的应用有很多文献报道,如寿命预测,性能,在线估计和安全性。绝大多数与AI应用于诊断和预测的文章都集中在在线估计(48%)或寿命预测(44%)上,而涉及性能和安全性的文章占少数(均为4%)。此外,AI还可以帮助从海量信息中提取数据并对提取数据进行分析。比如收集不同格式的非结构化数据,如纯文本、pdf、html、xml或网页等;清理和预处理文本(删除标签,广告等)并将其转换为易于阅读的格式;将非结构化数据转换为结构化数据,作为训练AI算法的数据库。电池AI不是炒作总之,人工智能在电池研发中非常有能力和潜力,并且已经有大量的科学研究实例和应用报道,只是目前主要还停留在研究领域,还没有在产业界的实际应用。相信不久的将来,电池AI会得到充分利用,进一步推动电池技术进步。参考文献ArtificialIntelligenceAppliedtoBatteryResearch:HypeorReality?TeoLombardo,MarcDuquesnoy,HassnaEl-Bouysidy,FabianÅrén,AlfonsoGallo-Bueno,PeterBjørnJørgensen,ArghyaBhowmik,ArnaudDemortière,ElixabeteAyerbe,FranciscoAlcaide,MarineReynaud,JavierCarrasco,AlexisGrimaud,ChaoZhang,TejsVegge,PatrikJohansson,andAlejandroA.FrancoChemicalReviews2022122(12),10899-10969DOI:10.1021/acs.chemrev.1c00108公众号持续更新和分享锂电技术知识与资讯,终于获得了留言功能,前往屏幕最下方即可写下留言,期待与大家更多地留言互动交流,感谢朋友们继续支持与关注。更多的内容,也可以在公众号搜索阅读请大家继续支持本公众号,并提出宝贵的意见,期望朋友们在这里有所收获。来源:锂想生活

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈